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Abstract— Neural networks are machine learning 

algorithms inspired by the human brain regarding structure 

and function. The artificial neural network (ANN) performs 

well at tasks on which other conventional approaches fail. They 

play a crucial role in knowledge representation and learning. 

The strength of the connection between neurons is determined 

by weights. Weight optimization is critical to neural networks 

due to several reasons, more specifically it enables more 

accurate predictions and reduces loss. A variety of optimization 

procedures are used for weight optimization. Gradient-based 

algorithms are the widely used method for optimization of 

neural network weights, but they are unable to tackle non-

differentiable functions. Moreover, gradient-based algorithms 

may trap in local minima for non-convex functions. Many 

significant real-world problems have non-convex 

characteristics, so utilizing gradient descent can cause 

algorithms to be stuck in local minima. In this paper, we 

proposed a novel gradient-free approach for optimizing neural 

network weights utilizing a genetic algorithm. The genetic 

algorithm is a meta-heuristic algorithm based on the natural 

evolution process. It can be used to solve both constrained and 

unconstrained optimization problems. Hence it can solve the 

problem of convergence for non-differentiable functions and 

can lead solutions towards global optima. Additionally, we 

proposed an algorithm to optimize neural network weights 

utilizing a genetic algorithm. We proved the correctness of our 

algorithm using the loop invariant technique. Moreover, 

computational cost analysis is presented for the proposed 

algorithm. Lastly, we utilized the MNIST dataset for 

demonstration of our proposed approach. Genetic algorithm 

capabilities of global search can overcome issues of local minima 

trapping of non-convex functions. 

Keywords— artificial neural network; optimization; weights; 

gradient free; Neural Network; Genetic Algorithm; neural 

networks; non convex functions; gradient descent 

I. INTRODUCTION  

Neural networks are a robust yet complex machine 

learning approach that has changed numerous fields. They 

simulate biological neuron and their interactions. They can 

learn to recognize intricate patterns in data, allowing them to 

excel at tasks like image recognition, speech processing, and 

natural language understanding. Neural networks can adapt 

and improve their performance through training on large 

datasets. This allows them to handle real-world complexities 

that rule-based systems struggle with. The activation function 

decides whether the neuron should be activated or not. The 

strength between connected neurons is determined and 

adjusted by weights. In neural networks, weight optimization 

is crucial for several reasons including improved 

performance, faster convergence, and efficiency. It helps in 

optimizing loss, which enables more precise predictions. 

There are various optimization algorithms that are utilized for 

weight optimization. The most well–known approach for 

optimizing NN weights is a gradient-based algorithm called 

as gradient descent. Gradient descent tries to optimize the loss 

function over a number of iterations utilizing local minima. It 

assumes that all functions are differentiable, hence it is unable 

to handle tasks that cannot be differentiated. The number of 

iterations required by gradient–based algorithms varies 

depending on the size of the task. Numerous significant issues 

are nonconvex, hence trying to differentiate them may lead 

the algorithm to trap in local optima.  

Gradient based algorithms are worst in non-convex 

functions in which they may trap in local minima [1]. 

Additionally, they are slow as the number of iterations 

depends upon the problem scale [2]. Many researchers used 

different algorithms for gradient free weight optimization of 

neural networks. For neural network training, stochastic 

gradient descent (SGD) and its variations have gained 

popularity in recent years. SGD’s optimization is more robust 

to noisy training data than adaptive gradient approaches. 

However, it has drawbacks related to vanishing gradients, 

extreme input sensitivity, and a lack of theoretical assurances 

[3].   

In this study, we presented a novel approach to weight 

optimization of neural networks utilizing a genetic algorithm. 

The genetic algorithm is nature inspired algorithm and is 

based on the principle of natural selection, the mechanism 

that drives biological evolution, forms the basis of the genetic 

algorithm. It’s a method for overcoming problems with 

limited and unconstrained optimization. The genetic 

algorithm is used to modify a population of individual 

solutions continuously.  

A genetic algorithm is a metaheuristic optimization 

algorithm that can be used to solve both constrained and 

unconstrained optimization problems. Hence it can solve the 

problem of convergence for non-differentiable functions and 

can lead solutions towards global optima. We have utilized 

the power of genetic algorithm for optimization of neural 

network weights. As individual solutions are refined at each 

generation at the end our solution converges towards global 
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optima and we get optimal solutions, so it overcomes the 

problem of gradient-based optimization. The main 

contributions of this paper are as follows: 

• We developed the neural network with gradient-free 

optimization utilizing a genetic algorithm. 

• Proposed novel algorithm for gradient-free 

optimization-based neural network utilized for 

image classification. 

• Demonstrated the use of gradient-free optimization-

based neural network utilizing MNIST dataset. 

This paper is divided into nine sections. In the next 

section relevant reviewed literature is presented. In the third 

section, the Genetic Algorithm is discussed along with 

different parent selection strategies. In the fourth section, our 

proposed approach is discussed. The correctness of the 

algorithm is proved in the fifth section utilizing the loop 

invariant method. The computational cost analysis is 

presented in the sixth section. The seventh section presents 

the methodology which is followed by results and findings 

presented in the eighth section. The final section concludes 

the study, emphasizing the significance of the research and 

its potential implications. 

II. LITERATURE REVIEW 

In neural networks, weight optimization is an integral 

part, as it reduces losses due to which more accurate 

predictions are possible. For optimization of weights, 

different optimization algorithms are used.  

Gradient based algorithm (gradient descent) is the most 

recognized algorithm for the optimization of NN weights. 

Gradient based algorithm considers every function as 

differentiable and so it fails for non–differentiable functions. 

Gradient Descent is worst in non–convex functions in which 

it may stuck in local minima [1]. Gradient based algorithms 

are slow as the number of iterations depends upon the 

problem scale [2]. Stochastic Gradient Descent (SGD) and its 

variants have been popular in recent years for neural network 

training. Results show that SGD optimization is more 

resistant to noisy training data than its adaptive gradient 

techniques [5][12]. However, it suffers from limitations of 

vanishing gradients, excessive sensitivity to input, and a lack 

of theoretical guarantees [3]. To overcome these limitations, 

alternative algorithms for optimization of neural network 

weights have attracted fast-increasing attention.  

It is possible to use Local Search (LS) for a derivative-

free, single–candidate optimization of neural networks. In the 

LS algorithm, portions of the search space are iteratively 

subjected to limited noise. According to the results stated by 

the author, LS was able to converge to a lower loss than SGD 

even if it was not competitive in terms of convergence speed 

[4]. Additionally, though with lesser performance, LS trained 

the convolutional neural network (CNN) using Accuracy 

rather than Loss as a learning signal. LS offers a workable 

substitute when SGD fails or is not appropriate. A Random 

Search Optimization (RSO) which is a gradient free Markov 

Chain Monte Carlo search–based approach can also be used. 

RSO investigates if adding a perturbation to a weight in a 

deep neural network reduces the loss on a mini-batch. If 

doing so lessens the loss, the weight is updated; otherwise, 

the current weight is kept. When comparing the number of 

weight updates, RSO converges orders of magnitude quicker 

than backpropagation. Even still, RSO’s training time scales 

linearly with the number of parameters in the neural network 

because it computes the function for each weight update [9].  

Evolutionary techniques can be used in place of 

randomization. In evolutionary algorithms (EAs), 

fundamental ideas from evolutionary biology, such as 

inheritance, random variation, and selection, are incorporated 

into algorithms that are used to solve challenging computer 

issues. Numerous challenging problems from a wide range of 

areas can be solved with EA approaches, and they can also 

create machine intelligence that is competitive with humans 

[10]. EAs also offer several significant advantages over 

common machine learning techniques, such as less reliance 

on the presence of a known or discoverable gradient within 

the search space, the ability to handle design problems where 

the goal is to create new entities entirely [11]; the ability to 

solve issues where human expertise is very restricted, support 

for interpretable solution representations, support for 

numerous objectives, and seamless integration of human 

expert knowledge. Grey Wolf Optimization (GWO) which is 

a gradient-free nature inspired algorithm can also be used for 

the optimization of neural network weights. Elman Neural 

Network (ENN) which can memorize past information can be 

used to solve the stock problem with GWO for the 

optimization of parameters [6].  

The author showed empirically that ENN with GWO as 

an optimizer provides a more accurate prediction than 

benchmark models. The authors also stated that GWO 

surpasses the grasshopper optimization algorithm in 

adjusting the parameters of the neural network [7]. Hybrid 

Wolf–Bat algorithm which is a hybrid of two recently 

developed nature inspired algorithms, performs better than 

other bio-inspired algorithms in terms of accuracy and 

convergence speed [8]. Particle Swarm Optimization (PSO) 

is a metaheuristic algorithm that draws inspiration from the 

collective behavior of social organisms including ant 

colonies, fish schools, and bird flocks. This algorithm mimics 

how members communicate and share information. 

Numerous optimization problems have been solved using 

particle swarm optimization, both alone and in conjunction 

with other current algorithms. Through agents, sometimes 

known as particles, whose trajectories are modified by a 

stochastic and a deterministic component, this method 

searches for the best possible solution [13]. PSO can also be 

used for gradient free optimization of neural networks. PSO 

algorithms are skilled in both exploration and exploitation 

and can address simultaneous adaptation in each NN 

component [14][15]. PSO can quickly converge CNN 

architecture with performance [16][17]. In [18] researchers 

focus on the prediction of utilization of cloud resources using 

a Functional Link Neural Network (FLNN) with a hybrid 

Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO). They tested the proposed strategy on Google cluster 

trace data, and the results of their experiments revealed that 

it is more accurate than more conventional methods. Another 

nature inspired algorithm Ant Colony Optimization (ACO) 

can also be used for the optimization of neural network 
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weights. [19][20][21] uses ACO for the optimization of 

neural networks and showed that ACO optimized neural 

network predicts more accurately with the lowest error. A 

thorough review of the literature and software repositories 

indicated that many authors used partial gradient–based 

approaches in the name of gradient free approach for 

optimization of neural network weights. Some authors also 

used different evolutionary algorithms or nature inspired 

algorithms for optimization, which results in better accuracy. 

III. ALGORITHM 

To optimize neural network weights, this paper proposes 

a gradient-free approach based on a genetic algorithm. The 

genetic algorithm is based on natural selection the process 

that derives biological evolution. It is a technique for 

resolving both constrained and unconstrained optimization 

issues. A population of individual solutions is repeatedly 

modified by the genetic algorithm. The genetic algorithm 

chooses individuals of the present population as parents at 

each stage and employs them to produce the offspring that 

will make up the following generation. The population 

“evolves” toward the best solution over subsequent 

generations. The genetic algorithm can solve many 

optimization problems, including those where the objective 

function is discontinuous, non–differentiable, stochastic, or 

highly nonlinear and are not well suited for standard 

optimization algorithms. The genetic algorithm is presented 

below:  

1) Initialize initial population  

2) Compute the fitness of the population  

3) do  

      • Select fittest candidates as parents  

      • Offspring generation using crossover and mutation  

      • Compute the fitness of the population  

    While! (Termination criteria fulfilled) 

4) Stop 

 Termination criteria are the most important aspect of 

genetic algorithms. The three termination criteria used for 

GA are maxed number of generations, convergence-based, 

and predefined value based. Fig 1 is the flowchart of the 

standard genetic algorithm. Parent selection is a very crucial 

step in the convergence of genetic algorithm. 

It is vital to maintain diversity in the population to avoid 

premature convergence. There are several techniques for 

parent selection in genetic algorithm. Fitness proportionate 

selection, tournament selection, and rank based selection are 

the most common.  

A. Parent Selection Strategies  

Parent selection is a very crucial step in the convergence 

of genetic algorithm. It is significant to maintain diversity in 

the population to avoid premature convergence. There are 

several techniques for parent selection in genetic algorithm. 

Fitness proportionate selection, tournament selection, and 

rank based selection are most common.  

i. Fitness Proportionate Selection 

Fitness proportionate selection is the most popular 

technique for parent selection. In this, every individual has 

the probability to become a parent which is proportional to its 

fitness. So, the fitter individuals have higher chances of 

mating, and their features will propagate to the next 

generation. Two strategies for its implementation are:  

1) Roulette Wheel Selection 

 Roulette wheel selection is also known as fitness 

proportionate selection, in which the probability of selection 

is assigned to each individual based on their fitness level 

relative to the total fitness of the population. A circular is 

divided into n portions or pies, where each portion is the 

fitness of individuals and n is the number of individuals. The 

wheel is rotated to select individuals, with those having 

higher fitness occupying broader segments and thus having a 

higher probability of being chosen. The fittest individuals 

occupy a dominant portion of the roulette wheel, so they have 

more chances of selection.  

2) Stochastic Universal Sampling 

Stochastic universal sampling is like roulette wheel 

selection but instead of one fixed point multiple fixed points 

are chosen. All the parents are selected in just one spin.  
 

 
Fig. 1. Flowchart of genetic algorithm.  

 

ii. Tournament Selection 

In tournament selection, K individuals are randomly selected 

from the population for the tournament, and the best out of 

these are selected for mating. The process is iterated multiple 

times until all the fittest candidates are selected for mating.  

iii. Rank Based Selection 

Rank based selection works well when individuals have very 

close fitness values. Everyone has a portion of the pie as per 

their rank. All individuals are ranked as per their fitness 

scores, so every individual has an almost equal share of the 

pie. 

iv. Truncation Selection 

Truncation selection is the fundamental technique in this 

context, but its application is relatively limited in practice. It 

orders the candidate solutions and then selects n fittest 

individuals. 



Journal of Machine Learning and Deep Learning (JMLDL)  4 

 

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm 

B. Offspring Generation 

In every search algorithm, two main strategies are used to 

search, exploration and exploitation. In exploration, entirely 

new regions of search space are explored. While in 

exploitation, solutions that exist in already explored regions 

are searched. Two operators that are used for offspring 

generation in the genetic algorithm are:  

1. Mutation  

The mutation operator increases the structural diversity of the 

population. It randomly modifies one or more genes of 

chromosomes for reproduction of offspring. It helps in 

exploring new solutions, which increases genetic diversity 

and prevents premature convergence. It implements the 

exploration operator and widens the search space.  

2. Crossover  

The crossover operator combines the genes of parents for 

reproduction. One-point crossover and two-point crossover 

are widely used crossover operators. In a one-point crossover, 

randomly one point is selected less than the length of 

chromosomes, and genes are exchanged at this point. Two-

point crossover is the same as a one-point crossover but 

instead of one point two points are selected randomly and 

then their genes are swapped. Most solutions generated from 

crossover exist in the exploitation zone, so the crossover 

operator implements exploitation. 

IV. NEURAL NETWORK WEIGHTS OPTIMIZATION 

UTILIZING GENETIC ALGORITHM 

Weight optimization is important in neural networks because 

it lowers losses, which makes it feasible to make more 

accurate predictions. Different optimization algorithms are 

employed for weight optimization. The most used approach 

for NN weight optimization is a gradient–based algorithm 

(gradient descent). The gradient-based technique considers 

every function to be differentiable, hence it fails for functions 

that are not differentiable. The number of iterations in 

gradient-based algorithms is scale–dependent and extremely 

sluggish. Numerous significant issues are non–convex, where 

an algorithm may become stuck in a local optimum. The 

worst non-convex functions for gradient-based algorithms 

are those where they may become stuck in local minima. In 

this paper, we proposed a gradient free weights optimization 

technique based on a genetic algorithm. The genetic 

algorithm is based on Darwin’s theory of natural evolution, 

which is based on the notion that all species are connected 

and undergo slow evolution. The process of natural selection 

is what drives evolution, which is the change in a species’ 

features over multiple generations. The population of the 

genetic algorithm is a set of all individuals. Each individual 

is represented in chromosome a bit string for genotypic 

representation, which is a depiction of the DNA structure of 

species. So, the population of individual solutions represents 

a population of species that evolves with time. Fig 2 

illustrates the representation of genes, chromosomes, and 

population. Gene is the specific character of the chromosome, 

and the value of that character is allele. A chromosome is 

represented as a bit string array and a population is a set of 

chromosomes.  

Fig. 2. Representation of gene, chromosome, and population. 

 

Fig 3 is the architecture of a neural network that uses a genetic 

algorithm for weight optimization. This neural network is 

used for handwritten character recognition on the MINIST 

dataset. In genetic algorithm, fitness evaluation is dependent 

on the objective function of the problem. For optimization of 

neural network weights, two possible objectives are 

minimizing error and maximizing accuracy. Algorithm 1 

outlines the pseudocode of the proposed optimization of 

neural network weights using a genetic algorithm. Steps 1 – 

7 are related to the inputs and outputs of the system.  In the 

next step, the neural network is initialized. Step 9 evaluates 

the fitness of the initialized neural network. The while loop 

in steps 10 – 14 optimizes neural network weights utilizing a 

genetic algorithm. After the execution of this algorithm, 

neural network weights and biases will be optimized. 

 

Algorithm 1: Neural network weights optimization using 

GA 

Input: 

1. 

2. 

3. 

4. 

5. 

6. 

 

Training dataset 

Chromosome length = 10  

Population size = 10 

Termination criteria = convergence based 

Parent selection technique = binary tournament 

Reproduction method = one point crossover 

and flip mutation 

Output: 

7. 

 

Neural network with optimized weights and 

biases. 

 

8. Initialize neural network 

9. Evaluate fitness of initial population  

10. While !(termination_criteria_met) do 

11.  Select parents using fittest individuals 

12.  Generate offspring with selected parents 

using reproduction method 

13.  Calculate fitness of generated offspring 

14.  Append offspring candidates in population 

  end 

 

V. ALGORITHM CORRECTNESS PROOF 

The algorithm correctness will be proved using loop 

invariant. The three termination criteria used for GA are max 

number of generations, convergence based and predefined 

value based [3]. Therefore, the goal of termination criteria is 

to stop algorithm after reaching the maximum fitness. As 

there are three different termination criteria of GA, so 

termination and maintenance part of loop invariant will 

slightly differ in each criterion. So, correctness of GA using 

loop invariant is proved differently. As GA is optimization 

algorithm, it can be considered correct only if the solution of 

genetic algorithm is optimal. 

A. Convergence based  

The algorithm is terminated after solution is converged or 

when there is no change in population for X generations.  
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Fig. 2. Architecture of classification model with gradient free weight optimizer. 

 

Counter variable c is used to count number of generations in 

which population does not change.  

1) Loop Invariant 

At the start of iteration j of the loop, the population only 

consists fittest individuals (solutions) which survived from 

1st generation to jth generation.  

2) Initialization 

At start of loop, the initial population contains randomly 

generated solutions, which are then evaluated using fitness 

function. As this is 1st generation so all the individuals are 

fittest. Counter variable c is initialized with zero. 

3) Maintenance 

Assume that loop invariant holds at start of iteration j. Then 

the current generation must have fittest individuals 

(solutions), which survived from 1st generation to jth 

generation. In loop body of jth iteration, parents are selected 

from population using selection criteria. Offsprings are 

generated with parent chromosome using crossover and 

mutation. Fitness of offsprings and jth generation is 

evaluated, individuals who passes this evaluation proceed to 

next generation. If offsprings did not survive after evaluation 

increment counter variable c. Thus, at start of j+1 iteration the 

population only fittest individuals which survived from 1st 

generation (initial population) to j+1 iteration, which is what 

we are proving that at the end of each generation, only 

optimal individuals (solutions) survive.  

4) Termination 

The loop terminates when solution converges or c is equal to 

X. At the end of n generations, the loop invariant states: The 

solution is most optimal solution that survived from 1st to nth 

generation and the population remains same for X iterations. 

Because if any other optimal solution exists then it should 

survive and should be a part of population which remains 

same for at-least X generations so, the current best solution is 

optimal solution, which is what we are proving that at the end 

of X generations, the solution is optimal solution. Therefore, 

the algorithm is correct. 

B. Maximum Number of Generations 

 The algorithm is terminated after reaching n number of 

generations.  

1) Loop Invariant 

 At the start of iteration j of the loop, the population only 

consists fittest individuals (solutions) which survived from 

1st generation to jth generation.  

2) Initialization 

 At start of loop, the initial population contains randomly 

generated solutions, which are then evaluated using fitness 

function. As this is 1st generation so all the individuals are 

fittest.  

3) Maintenance 

 Assume that loop invariant holds at start of iteration j. Then 

the current generation must have fittest individuals 

(solutions), which survived from 1st generation to jth 

generation. In loop body of jth iteration, parents are selected 

from population using selection criteria. Offsprings are 

generated with parent chromosome using crossover and 

mutation. Fitness of offsprings and jth generation is 

evaluated, individuals who passes this evaluation proceed to 

next generation. Thus, at start of j+1 iteration the population 

only fittest individuals which survived from 1st generation 

(initial population) to j+1 iteration, which is what we are 

proving that at the end of each generation, only optimal 

individuals (solutions) survive.  

4) Termination 

The loop terminates after n generations. At the end of n 

generations, the loop invariant states: The best solution is 

optimal solution from 1st to n generations otherwise it would 

not survive till nth generation, which is what we are proving 

that at the end of n generations, the solution is optimal 

solution of n generations. Therefore, the algorithm is correct.  
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C. Predefined Value Based 

The algorithm is terminated after solution is either lesser than 

or equal to predefined value for minimization problem or 

greater than or equals to predefined value for maximization 

problem  

1) Loop Invariant 

At the start of iteration j of the loop, the population only 

consists fittest individuals (solutions) which survived from 

1st generation to jth generation.  

2) Initialization 

At start of loop, the initial population contains randomly 

generated solutions, which are then evaluated using fitness 

function. As this is 1st generation so all the individuals are 

fittest.  

3) Maintenance 

Assume that loop invariant holds at start of iteration j. Then 

the current generation must have fittest individuals 

(solutions), which survived from 1st generation to jth 

generation. In loop body of jth iteration, parents are selected 

from population using selection criteria. Offsprings are 

generated with parent chromosome using crossover and 

mutation. Fitness of offsprings and jth generation is 

evaluated, individuals who passes this evaluation proceed to 

next generation. Fitness of each solution is compared with 

predefined value, which does not fulfill the criteria. Thus, at 

start of j+1 iteration the population only fittest individuals 

which survived from 1st generation (initial population) to j+1 

iteration, which is what we are proving that at the end of each 

generation, only optimal individuals (solutions) survive.  

4) Termination 

 At termination of loop the best solution fitness is either lesser 

than or equal to predefined value for minimization problem 

or greater than or equals to predefined value for maximization 

problem. So, the best solution is optimal solution as it 

terminates after reaching the lower bound for minimization 

or upper bound for maximization of optimization problem. 

Therefore, the algorithm is correct. 

VI. COMPUTATIONAL COST ANALYSIS 

A. Theoretical Analysis 

The cost of genetic algorithm is dependent on number of 

generations, length of chromosomes, and population size. 

Because genetic algorithm is optimization algorithm, and 

optimized solution is searched using fitness scores of 

individuals in population. When convergence–based, and 

pre–defined value based termination criteria are used the 

number of generations population evolved is based on 

objective function. If predefined value-based termination 

criterion is used and initial population fitness satisfies the 

pre–defined value constraint, then algorithm will terminate 

just after 1st generation. It can be called as best case, but it’s 

rare case. As initial population is randomly populated, so 

getting optimized solution from random solution have rare 

chances. Even when convergence-based termination criterion 

is used, and solution did not change in 1st x generations then 

it is premature convergence. Parent selection technique also 

effects the computational cost of genetic algorithm. In 

roulette wheel selection the number of spins is equal to size 

of initial population or number of parents to be selected while 

in universal sampling all parents are selected in just one spin. 

In truncation or elitism selection the cost of sorting solutions 

will be added. The length of chromosome also effects the cost 

of genetic algorithm, as chromosomes are represented as bit 

array. In fitness evaluation and offspring generation 

operations are performed on chromosomes which is a bit 

array. Array traversal takes linear time, so the length of 

chromosomes affects the performance. Another key factor 

that impacts cost of genetic algorithm is population size.  

 
Fig 4. Runtime of a genetic algorithm as a function of the number of 

generations 

 
Fig 5. Runtime of a genetic algorithm as a function of the population size 

 
Fig. 6. Runtime of a genetic algorithm as a function of a chromosome length 
 

Population is a set of all individuals or all solutions. 

Programmatically, population is array of all chromosomes, 

where each chromosome is a bit array. If chromosome length 

equals population size, the running time will be quadratic, 

usually the length of chromosomes do not equal population 

size. But population size effects the cost of GA. For same 

objective function, the cost of GA varies as per parent 

selection technique, operators for offspring generation, 
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number of generations, population size, and length of 

chromosomes. For max number of generations termination 

criterion change in population size and length of 

chromosomes will change the computational cost. For usual 

choices one gene mutation, one point crossover and parent 

selection using roulette wheel the complexity of GA is 

O(g(nm + nm + n)) + O(f) 

Which can be simplified as, 

O(gnm) + O(f) 

where g is number of generations, n is population size, m is 

length of chromosomes, and O(f) is fitness evaluating 

function cost. 

B. Empirical Analysis 

In the context of this research, we considered using empirical 

analysis as a preferred method for evaluating performance of 

stochastic genetic algorithm. For parent selection binary 

tournament selection is used. For offspring generation 2–

point crossover operator, and flip mutation with 20% 

probability is used. Cost of fitness evaluation function used 

in this empirical analysis is constant (O(1)). Fig 4 is graph of 

genetic algorithm running time with respect to number of 

generations. For different number of generations same 

population size and chromosome length is used. GA is 

executed 5 times using 10000, 20000, 30000, 40000, 50000 

as number of generations, the chromosome length used is 10 

also the population size is 10. For parent selection and 

offspring generation above specifications are used. Empirical 

results showed that by increasing number of generations 

running time increases although chromosome length, 

population size, parent selection technique, and offspring 

generation operator remains same. Fig 5 is graph of genetic 

algorithm running time with respect to size of population. For 

varied sizes of population same number of generations and 

chromosome length is used. GA is executed 4 times using 10, 

100, 1000, 10000 as population sizes, the chromosome length 

used is 10 and GA is executed for 1000 generations each time. 

For parent selection and offspring generation above 

specifications are used. Empirical results showed that by 

increasing population size running time increases although 

chromosome length, number of generations, parent selection 

technique, and offspring generation operator remains same. 

Fig 6 is graph of genetic algorithm running time with respect 

to length of chromosomes. For different chromosome lengths 

same number of generations and population size is used. GA 

is executed 4 times using 10, 100, 1000, 10000 as 

chromosome length, the population size used is 100 and GA 

is executed for 1000 generations each time. For parent 

selection and offspring generation above specifications are 

used. 

 
Fig. 7. Training and test accuracies for gradient-based weight optimization and gradient-free weight optimization. 

 
Fig. 8. Training and test losses for gradient-based weight optimization and gradient-free weight optimization. 
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Empirical results showed that by increasing length of 

chromosomes running time increases although population 

size, number of generations, parent selection technique, and 

offspring generation operator remains same. It is observed 

during empirical analysis that increase in population size 

takes more time as compared to increase in generations or 

increase in chromosome length. 

VII. METHODOLOGY 

The methodology of proposed neural network weights 

optimization approach is discussed below: 

A. Dataset 

In order to assess efficiency of our proposed gradient free 

approach for optimization of neural network, we utilized 

MNIST dataset. MINIST dataset is database of handwritten 

digits has a training set of 60,000 samples, and a test set of 

10,000 samples. This publicly available dataset has a great 

value in deep learning community.  

B. Deep Learning Model 

The neural network architecture utilized in this study is feed-

forward network.  The model consists of input layer, single 

hidden layer, and output layer. Input layer has 32 neurons 

with ReLU (Rectified Linear Unit) activation function, 

hidden layer has 64 neurons with ReLU activation function, 

and output layer has 10 neurons with Softmax activation 

function.  

C. Genetic Algorithm 

The genetic algorithm presented in section IV is used for 

optimization of neural network weights.  The initial 

population consists of 10 individuals, while the length of 

chromosome is 10. Neural network weights are randomly 

initialized, and fitness of individuals is evaluated on 

validation set. Binary tournament is used for parent selection 

in each generation. One-point crossover and flip mutation is 

used for offspring generation. The genetic algorithm is 

terminated when validation accuracy converges. 

The model is trained on optimized weights and biases 

obtained from genetic algorithm. Adam optimizer is used for 

training of neural network. The performance of proposed 

approach is evaluated on validation set. 

VIII. RESULTS & DISCUSSION 

In this study, MINIST dataset is used to classify images with 

gradient free Neural Network using genetic algorithm and 

gradient based neural network to assess the efficacy of our 

proposed approach. MINIST dataset is database of 

handwritten digits. The feed-forward network is used as 

neural network architecture in this study. To assess efficacy 

of our proposed approach we compared results of training 

same dataset on same model architecture, using gradient 

based and gradient free approaches.   

 The base model used in both approaches created with same 

number of layers, and neurons. The model consists of input 

layer, single hidden layer, and output layer. Both models are 

trained for same number of epochs to analyze their efficacy 

after training for same number of epochs. Both models are 

trained for 3 epochs with batch size is 100. The genetic 

algorithm successfully optimized the neural network weights 

leading to an improvement in validation accuracy in just 3 

epochs. Figure 7 shows the training and test accuracies of 

gradient based and gradient free NN models. It is shown that 

gradient free optimization based neural network converges 

faster than neural network that optimizes weights using 

gradient based approach. The accuracies of both approaches 

are summarized in TABLE I. The training accuracy of MLP 

is 52%, and of GA–NN 96% after training both models for 3 

epochs. The validation accuracy of GA–NN is 95% and of 

MLP is 52%. It is shown that gradient free approach 

outperforms the gradient based approach when trained for 

same number of epochs. This indicates that the genetic 

algorithm effectively enhanced the model's performance. 

 
TABLE I. TRAINING & VALIDATION ACCURACIES 

 Gradient based 

optimization 

Gradient free 

optimization  

Training 

Accuracy 
52% 96% 

Validation 

Accuracy 
52% 95% 

 

Figure 8 shows the training and test loss of gradient based and 

gradient free NN models. It is shown that training and is 

greater than gradient free GA–NN. The training and 

validation loss curves of gradient free optimization indicate 

faster convergence when using optimized weights. Although 

processing time of gradient free GA-NN is greater than 

processing time of gradient based MLP, but the performance 

of GA–NN is much better than gradient based MLP. GA–NN 

predicts with 95% accuracy after training for 3 epochs. MLP 

is also trained on same NN architecture with same number of 

epochs, but its accuracy is 52%. Neural networks 

performance trained on same dataset is usually evaluated 

using model’s accuracy and its loss during training and 

testing. Whereas it is desired that accuracy should be highest, 

and loss should be lowest. To evaluate weights optimization 

with both approaches, the performance of optimization 

technique can be evaluated in terms of high accuracy and 

minimized loss, provided that both models have same neural 

network architecture and hyperparameters. 

Neural network with genetic algorithm as weights optimizer 

outperforms gradient based neural network. But for some 

cases when problem is simple it may take more computation 

time, or it may be slower than gradient based neural network.  

IX. CONCLUSION & FUTURE WORK 

In this study, we explored the use genetic algorithm for 

optimization of neural network weights, on MNIST dataset. 

The results that genetic algorithm can effectively improve the 

accuracy compared to conventional gradient based approach 

in lesser number of epochs. Feed-forward neural network 

with genetic algorithm as weight optimizer can predict with 

95% accuracy after training for 3 epochs. Another feed-

forward network with same architecture and gradient descent 

as weights optimizer is trained for same number of epochs 

but its accuracy is 52%. Cost analysis of genetic algorithm is 

also performed, and it shows that cost of stochastic genetic 

algorithm is mainly based on number of generations, 

chromosome length, population size, and fitness function 

even if same methods are used for parent selection and 

offspring generation. Neural network with genetic algorithm 
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as weights optimizer outperforms gradient based neural 

network. But for simple use cases it may be slower than 

gradient based neural network. Many important problems 

have non–convex nature, in which gradient–based algorithm 

may trap in local minima. The findings suggest that genetic 

algorithm can serve as a powerful tool for optimizing neural 

network weights, particularly in scenarios where traditional 

optimization techniques may struggle to escape local minima. 

The observed improvements in model performance highlight 

the potential of evolutionary algorithms in machine learning 

applications. In future research, researchers may investigate 

the potential of other nature inspired algorithms for 

optimization of neural network weights. They can also 

analyze the performance of our proposed algorithm on 

complex neural network architectures such as transformers or 

recurrent neural networks (RNN) to assess the scalability and 

effectiveness of this approach. Future research may also 

explore the methods for optimization of genetic algorithm 

computational time and making this approach more feasible 

for large scale applications. 
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