
Journal of Machine Learning and Deep Learning (JMLDL)

Volume 1, Issue 1, Date: 31-December-2024

ISSN: 2978-4336, DOI: 10.64820/AEPJMLDL.11.1.9.122024 1

 Received: 29-07-2024

 Revised: 27-08-2024

 Published: 31-12-2024
This article is freely accessible under the Creative Commons Attribution License, allowing for its use, distribution, and reproduction in any format, as long as

the original work is correctly cited. © 2024 The Authors.

Optimization of Neural Network Weights with

Nature Inspired Algorithm

Yusra Shereen

Department of Computer Science, FAST NUCES, Karachi, Pakistan

Email: yusrashereen@gmail.com

Abstract— Neural networks are machine learning

algorithms inspired by the human brain regarding structure

and function. The artificial neural network (ANN) performs

well at tasks on which other conventional approaches fail. They

play a crucial role in knowledge representation and learning.

The strength of the connection between neurons is determined

by weights. Weight optimization is critical to neural networks

due to several reasons, more specifically it enables more

accurate predictions and reduces loss. A variety of optimization

procedures are used for weight optimization. Gradient-based

algorithms are the widely used method for optimization of

neural network weights, but they are unable to tackle non-

differentiable functions. Moreover, gradient-based algorithms

may trap in local minima for non-convex functions. Many

significant real-world problems have non-convex

characteristics, so utilizing gradient descent can cause

algorithms to be stuck in local minima. In this paper, we

proposed a novel gradient-free approach for optimizing neural

network weights utilizing a genetic algorithm. The genetic

algorithm is a meta-heuristic algorithm based on the natural

evolution process. It can be used to solve both constrained and

unconstrained optimization problems. Hence it can solve the

problem of convergence for non-differentiable functions and

can lead solutions towards global optima. Additionally, we

proposed an algorithm to optimize neural network weights

utilizing a genetic algorithm. We proved the correctness of our

algorithm using the loop invariant technique. Moreover,

computational cost analysis is presented for the proposed

algorithm. Lastly, we utilized the MNIST dataset for

demonstration of our proposed approach. Genetic algorithm

capabilities of global search can overcome issues of local minima

trapping of non-convex functions.

Keywords— artificial neural network; optimization; weights;

gradient free; Neural Network; Genetic Algorithm; neural

networks; non convex functions; gradient descent

I. INTRODUCTION

Neural networks are a robust yet complex machine

learning approach that has changed numerous fields. They

simulate biological neuron and their interactions. They can

learn to recognize intricate patterns in data, allowing them to

excel at tasks like image recognition, speech processing, and

natural language understanding. Neural networks can adapt

and improve their performance through training on large

datasets. This allows them to handle real-world complexities

that rule-based systems struggle with. The activation function

decides whether the neuron should be activated or not. The

strength between connected neurons is determined and

adjusted by weights. In neural networks, weight optimization

is crucial for several reasons including improved

performance, faster convergence, and efficiency. It helps in

optimizing loss, which enables more precise predictions.

There are various optimization algorithms that are utilized for

weight optimization. The most well–known approach for

optimizing NN weights is a gradient-based algorithm called

as gradient descent. Gradient descent tries to optimize the loss

function over a number of iterations utilizing local minima. It

assumes that all functions are differentiable, hence it is unable

to handle tasks that cannot be differentiated. The number of

iterations required by gradient–based algorithms varies

depending on the size of the task. Numerous significant issues

are nonconvex, hence trying to differentiate them may lead

the algorithm to trap in local optima.

Gradient based algorithms are worst in non-convex

functions in which they may trap in local minima [1].

Additionally, they are slow as the number of iterations

depends upon the problem scale [2]. Many researchers used

different algorithms for gradient free weight optimization of

neural networks. For neural network training, stochastic

gradient descent (SGD) and its variations have gained

popularity in recent years. SGD’s optimization is more robust

to noisy training data than adaptive gradient approaches.

However, it has drawbacks related to vanishing gradients,

extreme input sensitivity, and a lack of theoretical assurances

[3].

In this study, we presented a novel approach to weight

optimization of neural networks utilizing a genetic algorithm.

The genetic algorithm is nature inspired algorithm and is

based on the principle of natural selection, the mechanism

that drives biological evolution, forms the basis of the genetic

algorithm. It’s a method for overcoming problems with

limited and unconstrained optimization. The genetic

algorithm is used to modify a population of individual

solutions continuously.

A genetic algorithm is a metaheuristic optimization

algorithm that can be used to solve both constrained and

unconstrained optimization problems. Hence it can solve the

problem of convergence for non-differentiable functions and

can lead solutions towards global optima. We have utilized

the power of genetic algorithm for optimization of neural

network weights. As individual solutions are refined at each

generation at the end our solution converges towards global

Journal of Machine Learning and Deep Learning (JMLDL) 2

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm

optima and we get optimal solutions, so it overcomes the

problem of gradient-based optimization. The main

contributions of this paper are as follows:

• We developed the neural network with gradient-free

optimization utilizing a genetic algorithm.

• Proposed novel algorithm for gradient-free

optimization-based neural network utilized for

image classification.

• Demonstrated the use of gradient-free optimization-

based neural network utilizing MNIST dataset.

This paper is divided into nine sections. In the next

section relevant reviewed literature is presented. In the third

section, the Genetic Algorithm is discussed along with

different parent selection strategies. In the fourth section, our

proposed approach is discussed. The correctness of the

algorithm is proved in the fifth section utilizing the loop

invariant method. The computational cost analysis is

presented in the sixth section. The seventh section presents

the methodology which is followed by results and findings

presented in the eighth section. The final section concludes

the study, emphasizing the significance of the research and

its potential implications.

II. LITERATURE REVIEW

In neural networks, weight optimization is an integral

part, as it reduces losses due to which more accurate

predictions are possible. For optimization of weights,

different optimization algorithms are used.

Gradient based algorithm (gradient descent) is the most

recognized algorithm for the optimization of NN weights.

Gradient based algorithm considers every function as

differentiable and so it fails for non–differentiable functions.

Gradient Descent is worst in non–convex functions in which

it may stuck in local minima [1]. Gradient based algorithms

are slow as the number of iterations depends upon the

problem scale [2]. Stochastic Gradient Descent (SGD) and its

variants have been popular in recent years for neural network

training. Results show that SGD optimization is more

resistant to noisy training data than its adaptive gradient

techniques [5][12]. However, it suffers from limitations of

vanishing gradients, excessive sensitivity to input, and a lack

of theoretical guarantees [3]. To overcome these limitations,

alternative algorithms for optimization of neural network

weights have attracted fast-increasing attention.

It is possible to use Local Search (LS) for a derivative-

free, single–candidate optimization of neural networks. In the

LS algorithm, portions of the search space are iteratively

subjected to limited noise. According to the results stated by

the author, LS was able to converge to a lower loss than SGD

even if it was not competitive in terms of convergence speed

[4]. Additionally, though with lesser performance, LS trained

the convolutional neural network (CNN) using Accuracy

rather than Loss as a learning signal. LS offers a workable

substitute when SGD fails or is not appropriate. A Random

Search Optimization (RSO) which is a gradient free Markov

Chain Monte Carlo search–based approach can also be used.

RSO investigates if adding a perturbation to a weight in a

deep neural network reduces the loss on a mini-batch. If

doing so lessens the loss, the weight is updated; otherwise,

the current weight is kept. When comparing the number of

weight updates, RSO converges orders of magnitude quicker

than backpropagation. Even still, RSO’s training time scales

linearly with the number of parameters in the neural network

because it computes the function for each weight update [9].

Evolutionary techniques can be used in place of

randomization. In evolutionary algorithms (EAs),

fundamental ideas from evolutionary biology, such as

inheritance, random variation, and selection, are incorporated

into algorithms that are used to solve challenging computer

issues. Numerous challenging problems from a wide range of

areas can be solved with EA approaches, and they can also

create machine intelligence that is competitive with humans

[10]. EAs also offer several significant advantages over

common machine learning techniques, such as less reliance

on the presence of a known or discoverable gradient within

the search space, the ability to handle design problems where

the goal is to create new entities entirely [11]; the ability to

solve issues where human expertise is very restricted, support

for interpretable solution representations, support for

numerous objectives, and seamless integration of human

expert knowledge. Grey Wolf Optimization (GWO) which is

a gradient-free nature inspired algorithm can also be used for

the optimization of neural network weights. Elman Neural

Network (ENN) which can memorize past information can be

used to solve the stock problem with GWO for the

optimization of parameters [6].

The author showed empirically that ENN with GWO as

an optimizer provides a more accurate prediction than

benchmark models. The authors also stated that GWO

surpasses the grasshopper optimization algorithm in

adjusting the parameters of the neural network [7]. Hybrid

Wolf–Bat algorithm which is a hybrid of two recently

developed nature inspired algorithms, performs better than

other bio-inspired algorithms in terms of accuracy and

convergence speed [8]. Particle Swarm Optimization (PSO)

is a metaheuristic algorithm that draws inspiration from the

collective behavior of social organisms including ant

colonies, fish schools, and bird flocks. This algorithm mimics

how members communicate and share information.

Numerous optimization problems have been solved using

particle swarm optimization, both alone and in conjunction

with other current algorithms. Through agents, sometimes

known as particles, whose trajectories are modified by a

stochastic and a deterministic component, this method

searches for the best possible solution [13]. PSO can also be

used for gradient free optimization of neural networks. PSO

algorithms are skilled in both exploration and exploitation

and can address simultaneous adaptation in each NN

component [14][15]. PSO can quickly converge CNN

architecture with performance [16][17]. In [18] researchers

focus on the prediction of utilization of cloud resources using

a Functional Link Neural Network (FLNN) with a hybrid

Genetic Algorithm (GA) and Particle Swarm Optimization

(PSO). They tested the proposed strategy on Google cluster

trace data, and the results of their experiments revealed that

it is more accurate than more conventional methods. Another

nature inspired algorithm Ant Colony Optimization (ACO)

can also be used for the optimization of neural network

Journal of Machine Learning and Deep Learning (JMLDL) 3

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm

weights. [19][20][21] uses ACO for the optimization of

neural networks and showed that ACO optimized neural

network predicts more accurately with the lowest error. A

thorough review of the literature and software repositories

indicated that many authors used partial gradient–based

approaches in the name of gradient free approach for

optimization of neural network weights. Some authors also

used different evolutionary algorithms or nature inspired

algorithms for optimization, which results in better accuracy.

III. ALGORITHM

To optimize neural network weights, this paper proposes

a gradient-free approach based on a genetic algorithm. The

genetic algorithm is based on natural selection the process

that derives biological evolution. It is a technique for

resolving both constrained and unconstrained optimization

issues. A population of individual solutions is repeatedly

modified by the genetic algorithm. The genetic algorithm

chooses individuals of the present population as parents at

each stage and employs them to produce the offspring that

will make up the following generation. The population

“evolves” toward the best solution over subsequent

generations. The genetic algorithm can solve many

optimization problems, including those where the objective

function is discontinuous, non–differentiable, stochastic, or

highly nonlinear and are not well suited for standard

optimization algorithms. The genetic algorithm is presented

below:

1) Initialize initial population

2) Compute the fitness of the population

3) do

 • Select fittest candidates as parents

 • Offspring generation using crossover and mutation

 • Compute the fitness of the population

 While! (Termination criteria fulfilled)

4) Stop

 Termination criteria are the most important aspect of

genetic algorithms. The three termination criteria used for

GA are maxed number of generations, convergence-based,

and predefined value based. Fig 1 is the flowchart of the

standard genetic algorithm. Parent selection is a very crucial

step in the convergence of genetic algorithm.

It is vital to maintain diversity in the population to avoid

premature convergence. There are several techniques for

parent selection in genetic algorithm. Fitness proportionate

selection, tournament selection, and rank based selection are

the most common.

A. Parent Selection Strategies

Parent selection is a very crucial step in the convergence

of genetic algorithm. It is significant to maintain diversity in

the population to avoid premature convergence. There are

several techniques for parent selection in genetic algorithm.

Fitness proportionate selection, tournament selection, and

rank based selection are most common.

i. Fitness Proportionate Selection

Fitness proportionate selection is the most popular

technique for parent selection. In this, every individual has

the probability to become a parent which is proportional to its

fitness. So, the fitter individuals have higher chances of

mating, and their features will propagate to the next

generation. Two strategies for its implementation are:

1) Roulette Wheel Selection

 Roulette wheel selection is also known as fitness

proportionate selection, in which the probability of selection

is assigned to each individual based on their fitness level

relative to the total fitness of the population. A circular is

divided into n portions or pies, where each portion is the

fitness of individuals and n is the number of individuals. The

wheel is rotated to select individuals, with those having

higher fitness occupying broader segments and thus having a

higher probability of being chosen. The fittest individuals

occupy a dominant portion of the roulette wheel, so they have

more chances of selection.

2) Stochastic Universal Sampling

Stochastic universal sampling is like roulette wheel

selection but instead of one fixed point multiple fixed points

are chosen. All the parents are selected in just one spin.

Fig. 1. Flowchart of genetic algorithm.

ii. Tournament Selection

In tournament selection, K individuals are randomly selected

from the population for the tournament, and the best out of

these are selected for mating. The process is iterated multiple

times until all the fittest candidates are selected for mating.

iii. Rank Based Selection

Rank based selection works well when individuals have very

close fitness values. Everyone has a portion of the pie as per

their rank. All individuals are ranked as per their fitness

scores, so every individual has an almost equal share of the

pie.

iv. Truncation Selection

Truncation selection is the fundamental technique in this

context, but its application is relatively limited in practice. It

orders the candidate solutions and then selects n fittest

individuals.

Journal of Machine Learning and Deep Learning (JMLDL) 4

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm

B. Offspring Generation

In every search algorithm, two main strategies are used to

search, exploration and exploitation. In exploration, entirely

new regions of search space are explored. While in

exploitation, solutions that exist in already explored regions

are searched. Two operators that are used for offspring

generation in the genetic algorithm are:

1. Mutation

The mutation operator increases the structural diversity of the

population. It randomly modifies one or more genes of

chromosomes for reproduction of offspring. It helps in

exploring new solutions, which increases genetic diversity

and prevents premature convergence. It implements the

exploration operator and widens the search space.

2. Crossover

The crossover operator combines the genes of parents for

reproduction. One-point crossover and two-point crossover

are widely used crossover operators. In a one-point crossover,

randomly one point is selected less than the length of

chromosomes, and genes are exchanged at this point. Two-

point crossover is the same as a one-point crossover but

instead of one point two points are selected randomly and

then their genes are swapped. Most solutions generated from

crossover exist in the exploitation zone, so the crossover

operator implements exploitation.

IV. NEURAL NETWORK WEIGHTS OPTIMIZATION

UTILIZING GENETIC ALGORITHM

Weight optimization is important in neural networks because

it lowers losses, which makes it feasible to make more

accurate predictions. Different optimization algorithms are

employed for weight optimization. The most used approach

for NN weight optimization is a gradient–based algorithm

(gradient descent). The gradient-based technique considers

every function to be differentiable, hence it fails for functions

that are not differentiable. The number of iterations in

gradient-based algorithms is scale–dependent and extremely

sluggish. Numerous significant issues are non–convex, where

an algorithm may become stuck in a local optimum. The

worst non-convex functions for gradient-based algorithms

are those where they may become stuck in local minima. In

this paper, we proposed a gradient free weights optimization

technique based on a genetic algorithm. The genetic

algorithm is based on Darwin’s theory of natural evolution,

which is based on the notion that all species are connected

and undergo slow evolution. The process of natural selection

is what drives evolution, which is the change in a species’

features over multiple generations. The population of the

genetic algorithm is a set of all individuals. Each individual

is represented in chromosome a bit string for genotypic

representation, which is a depiction of the DNA structure of

species. So, the population of individual solutions represents

a population of species that evolves with time. Fig 2

illustrates the representation of genes, chromosomes, and

population. Gene is the specific character of the chromosome,

and the value of that character is allele. A chromosome is

represented as a bit string array and a population is a set of

chromosomes.

Fig. 2. Representation of gene, chromosome, and population.

Fig 3 is the architecture of a neural network that uses a genetic

algorithm for weight optimization. This neural network is

used for handwritten character recognition on the MINIST

dataset. In genetic algorithm, fitness evaluation is dependent

on the objective function of the problem. For optimization of

neural network weights, two possible objectives are

minimizing error and maximizing accuracy. Algorithm 1

outlines the pseudocode of the proposed optimization of

neural network weights using a genetic algorithm. Steps 1 –

7 are related to the inputs and outputs of the system. In the

next step, the neural network is initialized. Step 9 evaluates

the fitness of the initialized neural network. The while loop

in steps 10 – 14 optimizes neural network weights utilizing a

genetic algorithm. After the execution of this algorithm,

neural network weights and biases will be optimized.

Algorithm 1: Neural network weights optimization using

GA

Input:

1.

2.

3.

4.

5.

6.

Training dataset

Chromosome length = 10

Population size = 10

Termination criteria = convergence based

Parent selection technique = binary tournament

Reproduction method = one point crossover

and flip mutation

Output:

7.

Neural network with optimized weights and

biases.

8. Initialize neural network

9. Evaluate fitness of initial population

10. While !(termination_criteria_met) do

11. Select parents using fittest individuals

12. Generate offspring with selected parents

using reproduction method

13. Calculate fitness of generated offspring

14. Append offspring candidates in population

 end

V. ALGORITHM CORRECTNESS PROOF

The algorithm correctness will be proved using loop

invariant. The three termination criteria used for GA are max

number of generations, convergence based and predefined

value based [3]. Therefore, the goal of termination criteria is

to stop algorithm after reaching the maximum fitness. As

there are three different termination criteria of GA, so

termination and maintenance part of loop invariant will

slightly differ in each criterion. So, correctness of GA using

loop invariant is proved differently. As GA is optimization

algorithm, it can be considered correct only if the solution of

genetic algorithm is optimal.

A. Convergence based

The algorithm is terminated after solution is converged or

when there is no change in population for X generations.

Journal of Machine Learning and Deep Learning (JMLDL) 5

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm

Fig. 2. Architecture of classification model with gradient free weight optimizer.

Counter variable c is used to count number of generations in

which population does not change.

1) Loop Invariant

At the start of iteration j of the loop, the population only

consists fittest individuals (solutions) which survived from

1st generation to jth generation.

2) Initialization

At start of loop, the initial population contains randomly

generated solutions, which are then evaluated using fitness

function. As this is 1st generation so all the individuals are

fittest. Counter variable c is initialized with zero.

3) Maintenance

Assume that loop invariant holds at start of iteration j. Then

the current generation must have fittest individuals

(solutions), which survived from 1st generation to jth

generation. In loop body of jth iteration, parents are selected

from population using selection criteria. Offsprings are

generated with parent chromosome using crossover and

mutation. Fitness of offsprings and jth generation is

evaluated, individuals who passes this evaluation proceed to

next generation. If offsprings did not survive after evaluation

increment counter variable c. Thus, at start of j+1 iteration the

population only fittest individuals which survived from 1st

generation (initial population) to j+1 iteration, which is what

we are proving that at the end of each generation, only

optimal individuals (solutions) survive.

4) Termination

The loop terminates when solution converges or c is equal to

X. At the end of n generations, the loop invariant states: The

solution is most optimal solution that survived from 1st to nth

generation and the population remains same for X iterations.

Because if any other optimal solution exists then it should

survive and should be a part of population which remains

same for at-least X generations so, the current best solution is

optimal solution, which is what we are proving that at the end

of X generations, the solution is optimal solution. Therefore,

the algorithm is correct.

B. Maximum Number of Generations

 The algorithm is terminated after reaching n number of

generations.

1) Loop Invariant

 At the start of iteration j of the loop, the population only

consists fittest individuals (solutions) which survived from

1st generation to jth generation.

2) Initialization

 At start of loop, the initial population contains randomly

generated solutions, which are then evaluated using fitness

function. As this is 1st generation so all the individuals are

fittest.

3) Maintenance

 Assume that loop invariant holds at start of iteration j. Then

the current generation must have fittest individuals

(solutions), which survived from 1st generation to jth

generation. In loop body of jth iteration, parents are selected

from population using selection criteria. Offsprings are

generated with parent chromosome using crossover and

mutation. Fitness of offsprings and jth generation is

evaluated, individuals who passes this evaluation proceed to

next generation. Thus, at start of j+1 iteration the population

only fittest individuals which survived from 1st generation

(initial population) to j+1 iteration, which is what we are

proving that at the end of each generation, only optimal

individuals (solutions) survive.

4) Termination

The loop terminates after n generations. At the end of n

generations, the loop invariant states: The best solution is

optimal solution from 1st to n generations otherwise it would

not survive till nth generation, which is what we are proving

that at the end of n generations, the solution is optimal

solution of n generations. Therefore, the algorithm is correct.

Journal of Machine Learning and Deep Learning (JMLDL) 6

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm

C. Predefined Value Based

The algorithm is terminated after solution is either lesser than

or equal to predefined value for minimization problem or

greater than or equals to predefined value for maximization

problem

1) Loop Invariant

At the start of iteration j of the loop, the population only

consists fittest individuals (solutions) which survived from

1st generation to jth generation.

2) Initialization

At start of loop, the initial population contains randomly

generated solutions, which are then evaluated using fitness

function. As this is 1st generation so all the individuals are

fittest.

3) Maintenance

Assume that loop invariant holds at start of iteration j. Then

the current generation must have fittest individuals

(solutions), which survived from 1st generation to jth

generation. In loop body of jth iteration, parents are selected

from population using selection criteria. Offsprings are

generated with parent chromosome using crossover and

mutation. Fitness of offsprings and jth generation is

evaluated, individuals who passes this evaluation proceed to

next generation. Fitness of each solution is compared with

predefined value, which does not fulfill the criteria. Thus, at

start of j+1 iteration the population only fittest individuals

which survived from 1st generation (initial population) to j+1

iteration, which is what we are proving that at the end of each

generation, only optimal individuals (solutions) survive.

4) Termination

 At termination of loop the best solution fitness is either lesser

than or equal to predefined value for minimization problem

or greater than or equals to predefined value for maximization

problem. So, the best solution is optimal solution as it

terminates after reaching the lower bound for minimization

or upper bound for maximization of optimization problem.

Therefore, the algorithm is correct.

VI. COMPUTATIONAL COST ANALYSIS

A. Theoretical Analysis

The cost of genetic algorithm is dependent on number of

generations, length of chromosomes, and population size.

Because genetic algorithm is optimization algorithm, and

optimized solution is searched using fitness scores of

individuals in population. When convergence–based, and

pre–defined value based termination criteria are used the

number of generations population evolved is based on

objective function. If predefined value-based termination

criterion is used and initial population fitness satisfies the

pre–defined value constraint, then algorithm will terminate

just after 1st generation. It can be called as best case, but it’s

rare case. As initial population is randomly populated, so

getting optimized solution from random solution have rare

chances. Even when convergence-based termination criterion

is used, and solution did not change in 1st x generations then

it is premature convergence. Parent selection technique also

effects the computational cost of genetic algorithm. In

roulette wheel selection the number of spins is equal to size

of initial population or number of parents to be selected while

in universal sampling all parents are selected in just one spin.

In truncation or elitism selection the cost of sorting solutions

will be added. The length of chromosome also effects the cost

of genetic algorithm, as chromosomes are represented as bit

array. In fitness evaluation and offspring generation

operations are performed on chromosomes which is a bit

array. Array traversal takes linear time, so the length of

chromosomes affects the performance. Another key factor

that impacts cost of genetic algorithm is population size.

Fig 4. Runtime of a genetic algorithm as a function of the number of

generations

Fig 5. Runtime of a genetic algorithm as a function of the population size

Fig. 6. Runtime of a genetic algorithm as a function of a chromosome length

Population is a set of all individuals or all solutions.

Programmatically, population is array of all chromosomes,

where each chromosome is a bit array. If chromosome length

equals population size, the running time will be quadratic,

usually the length of chromosomes do not equal population

size. But population size effects the cost of GA. For same

objective function, the cost of GA varies as per parent

selection technique, operators for offspring generation,

Journal of Machine Learning and Deep Learning (JMLDL) 7

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm

number of generations, population size, and length of

chromosomes. For max number of generations termination

criterion change in population size and length of

chromosomes will change the computational cost. For usual

choices one gene mutation, one point crossover and parent

selection using roulette wheel the complexity of GA is

O(g(nm + nm + n)) + O(f)

Which can be simplified as,

O(gnm) + O(f)

where g is number of generations, n is population size, m is

length of chromosomes, and O(f) is fitness evaluating

function cost.

B. Empirical Analysis

In the context of this research, we considered using empirical

analysis as a preferred method for evaluating performance of

stochastic genetic algorithm. For parent selection binary

tournament selection is used. For offspring generation 2–

point crossover operator, and flip mutation with 20%

probability is used. Cost of fitness evaluation function used

in this empirical analysis is constant (O(1)). Fig 4 is graph of

genetic algorithm running time with respect to number of

generations. For different number of generations same

population size and chromosome length is used. GA is

executed 5 times using 10000, 20000, 30000, 40000, 50000

as number of generations, the chromosome length used is 10

also the population size is 10. For parent selection and

offspring generation above specifications are used. Empirical

results showed that by increasing number of generations

running time increases although chromosome length,

population size, parent selection technique, and offspring

generation operator remains same. Fig 5 is graph of genetic

algorithm running time with respect to size of population. For

varied sizes of population same number of generations and

chromosome length is used. GA is executed 4 times using 10,

100, 1000, 10000 as population sizes, the chromosome length

used is 10 and GA is executed for 1000 generations each time.

For parent selection and offspring generation above

specifications are used. Empirical results showed that by

increasing population size running time increases although

chromosome length, number of generations, parent selection

technique, and offspring generation operator remains same.

Fig 6 is graph of genetic algorithm running time with respect

to length of chromosomes. For different chromosome lengths

same number of generations and population size is used. GA

is executed 4 times using 10, 100, 1000, 10000 as

chromosome length, the population size used is 100 and GA

is executed for 1000 generations each time. For parent

selection and offspring generation above specifications are

used.

Fig. 7. Training and test accuracies for gradient-based weight optimization and gradient-free weight optimization.

Fig. 8. Training and test losses for gradient-based weight optimization and gradient-free weight optimization.

Journal of Machine Learning and Deep Learning (JMLDL) 8

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm

Empirical results showed that by increasing length of

chromosomes running time increases although population

size, number of generations, parent selection technique, and

offspring generation operator remains same. It is observed

during empirical analysis that increase in population size

takes more time as compared to increase in generations or

increase in chromosome length.

VII. METHODOLOGY

The methodology of proposed neural network weights

optimization approach is discussed below:

A. Dataset

In order to assess efficiency of our proposed gradient free

approach for optimization of neural network, we utilized

MNIST dataset. MINIST dataset is database of handwritten

digits has a training set of 60,000 samples, and a test set of

10,000 samples. This publicly available dataset has a great

value in deep learning community.

B. Deep Learning Model

The neural network architecture utilized in this study is feed-

forward network. The model consists of input layer, single

hidden layer, and output layer. Input layer has 32 neurons

with ReLU (Rectified Linear Unit) activation function,

hidden layer has 64 neurons with ReLU activation function,

and output layer has 10 neurons with Softmax activation

function.

C. Genetic Algorithm

The genetic algorithm presented in section IV is used for

optimization of neural network weights. The initial

population consists of 10 individuals, while the length of

chromosome is 10. Neural network weights are randomly

initialized, and fitness of individuals is evaluated on

validation set. Binary tournament is used for parent selection

in each generation. One-point crossover and flip mutation is

used for offspring generation. The genetic algorithm is

terminated when validation accuracy converges.

The model is trained on optimized weights and biases

obtained from genetic algorithm. Adam optimizer is used for

training of neural network. The performance of proposed

approach is evaluated on validation set.

VIII. RESULTS & DISCUSSION

In this study, MINIST dataset is used to classify images with

gradient free Neural Network using genetic algorithm and

gradient based neural network to assess the efficacy of our

proposed approach. MINIST dataset is database of

handwritten digits. The feed-forward network is used as

neural network architecture in this study. To assess efficacy

of our proposed approach we compared results of training

same dataset on same model architecture, using gradient

based and gradient free approaches.

 The base model used in both approaches created with same

number of layers, and neurons. The model consists of input

layer, single hidden layer, and output layer. Both models are

trained for same number of epochs to analyze their efficacy

after training for same number of epochs. Both models are

trained for 3 epochs with batch size is 100. The genetic

algorithm successfully optimized the neural network weights

leading to an improvement in validation accuracy in just 3

epochs. Figure 7 shows the training and test accuracies of

gradient based and gradient free NN models. It is shown that

gradient free optimization based neural network converges

faster than neural network that optimizes weights using

gradient based approach. The accuracies of both approaches

are summarized in TABLE I. The training accuracy of MLP

is 52%, and of GA–NN 96% after training both models for 3

epochs. The validation accuracy of GA–NN is 95% and of

MLP is 52%. It is shown that gradient free approach

outperforms the gradient based approach when trained for

same number of epochs. This indicates that the genetic

algorithm effectively enhanced the model's performance.

TABLE I. TRAINING & VALIDATION ACCURACIES

 Gradient based

optimization

Gradient free

optimization

Training

Accuracy
52% 96%

Validation

Accuracy
52% 95%

Figure 8 shows the training and test loss of gradient based and

gradient free NN models. It is shown that training and is

greater than gradient free GA–NN. The training and

validation loss curves of gradient free optimization indicate

faster convergence when using optimized weights. Although

processing time of gradient free GA-NN is greater than

processing time of gradient based MLP, but the performance

of GA–NN is much better than gradient based MLP. GA–NN

predicts with 95% accuracy after training for 3 epochs. MLP

is also trained on same NN architecture with same number of

epochs, but its accuracy is 52%. Neural networks

performance trained on same dataset is usually evaluated

using model’s accuracy and its loss during training and

testing. Whereas it is desired that accuracy should be highest,

and loss should be lowest. To evaluate weights optimization

with both approaches, the performance of optimization

technique can be evaluated in terms of high accuracy and

minimized loss, provided that both models have same neural

network architecture and hyperparameters.

Neural network with genetic algorithm as weights optimizer

outperforms gradient based neural network. But for some

cases when problem is simple it may take more computation

time, or it may be slower than gradient based neural network.

IX. CONCLUSION & FUTURE WORK

In this study, we explored the use genetic algorithm for

optimization of neural network weights, on MNIST dataset.

The results that genetic algorithm can effectively improve the

accuracy compared to conventional gradient based approach

in lesser number of epochs. Feed-forward neural network

with genetic algorithm as weight optimizer can predict with

95% accuracy after training for 3 epochs. Another feed-

forward network with same architecture and gradient descent

as weights optimizer is trained for same number of epochs

but its accuracy is 52%. Cost analysis of genetic algorithm is

also performed, and it shows that cost of stochastic genetic

algorithm is mainly based on number of generations,

chromosome length, population size, and fitness function

even if same methods are used for parent selection and

offspring generation. Neural network with genetic algorithm

Journal of Machine Learning and Deep Learning (JMLDL) 9

Yusra Shereen, Optimization of Neural Network Weights with Nature Inspired Algorithm

as weights optimizer outperforms gradient based neural

network. But for simple use cases it may be slower than

gradient based neural network. Many important problems

have non–convex nature, in which gradient–based algorithm

may trap in local minima. The findings suggest that genetic

algorithm can serve as a powerful tool for optimizing neural

network weights, particularly in scenarios where traditional

optimization techniques may struggle to escape local minima.

The observed improvements in model performance highlight

the potential of evolutionary algorithms in machine learning

applications. In future research, researchers may investigate

the potential of other nature inspired algorithms for

optimization of neural network weights. They can also

analyze the performance of our proposed algorithm on

complex neural network architectures such as transformers or

recurrent neural networks (RNN) to assess the scalability and

effectiveness of this approach. Future research may also

explore the methods for optimization of genetic algorithm

computational time and making this approach more feasible

for large scale applications.

REFERENCES

[1] Datacamp, (March 2022), “Gradient Descent Tutorial”
https://www.datacamp.com/tutorial/tutorialgradient-descent

[2] Datajobs, “Gradient Descent”,
https://datajobs.com/datasciencerepo/Gradient-Descent-[RIT].pdf

[3] Junxiang Wang, Hongyi Li, Liang Zhao, ”Accelerated Gradient-free

Neural Network Training by Multi-convex Alternating Optimization”,

Neurocomputing, Volume 487, 2022, Pages 130-143, ISSN 0925-
2312, https://doi.org/10.1016/j.neucom.2022.02.03 9

[4] A. Aly, G. Guadagni and J. B. Dugan, ”Derivative-Free Optimization

of Neural Networks using Local Search,” 2019 IEEE 10th Annual
Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), 2019, pp. 0293- 0299, doi:
10.1109/UEMCON47517.2019.8993007

[5] S. Chaudhury and T. Yamasaki, ”Robustness of Adaptive Neural

Network Optimization Under Training Noise,” in IEEE Access, vol. 9,

pp. 37039-37053, 2021, doi: 10.1109/ACCESS.2021.3062990

[6] Kumar Chandar, S. “Grey Wolf optimization-Elman neural network

model for stock price prediction,” in Soft Computing 25, pp. 649–658,
2021, doi: https://doi.org/10.1007/s00500-020-05174-2

[7] Moayedi, Hossein & Nguyen, Hoang & Foong, Loke. “Nonlinear
evolutionary swarm intelligence of grasshopper optimization algorithm

and gray wolf optimization for weight adjustment of neural network.”
Engineering with Computers. 2021, 37. 10.1007/s00366-019-00882-2.

[8] Utkarsh Agrawal, Jatin Arora, Rahul Singh, Deepak Gupta, Ashish

Khanna, and Aditya Khamparia. 2020. Hybrid Wolf-Bat Algorithm for
Optimization of Connection Weights in Multi-layer Perceptron. ACM

Trans. Multimedia Comput. Commun. Appl. 16, 1s, Article 37 (January
2020), 20 pages. https://doi.org/10.1145/3350532

[9] Tripathi, R., & Singh, B. (2020). “RSO: A Gradient Free Sampling

Based Approach For Training Deep Neural Networks.” arXiv.
https://doi.org/10.48550/arXiv.2005.05955

[10] Kannappan, K.; Spector, L.; Sipper, M.; Helmuth, T.; La Cava, W.;
Wisdom, J.; Bernstein, O. Analyzing a decade of humancompetitive

(“HUMIE”) winners: What can we learn? In Genetic Programming

Theory and Practice XII; Riolo, R., Worzel, W.P., Kotanchek, M., Eds.;
Springer International Publishing: Cham, Switzerland, 2015; pp. 149–
166

[11] Sipper, M.; Olson, R.S.; Moore, J.H. Evolutionary computation: The
next major transition of artificial intelligence? BioData Min. 2017, 10,
26.

[12] Towards data science, “Various optimization algorithms for neural

networks” https://towardsdatascience.com/optimizersfor-training-
neuralnetwork-59450d71caf6

[13] Clara Marina Mart´ınez, Dongpu Cao, “Integrated energy management

for electrified vehicles,” in Ihorizon-Enabled Energy Management for

Electrified Vehicles, Butterworth-Heinemann, 2019, pp 15-75, ISBN
9780128150108, https://doi.org/10.1016/B978-0-12-815010- 8.00002-
8

[14] Mazaheri, P., Rahnamayan, S., & Bidgoli, A. A. (2022). Designing

Artificial Neural Network Using Particle Swarm Optimization: A

Survey. In (Ed.), Swarm Intelligence - Recent Advances and Current
Applications [Working Title]. IntechOpen.
https://doi.org/10.5772/intechopen.106139

[15] Lin, Cheng-Jian, Garro, Beatriz A., Vazquez, Roberto A. (2015), ´
“Designing Artificial Neural Networks Using Particle Swarm

Optimization Algorithms”, in Computational Intelligence and
Neuroscience, Hindawi Publishing Corporation, ISSN - 1687-5265,
https://doi.org/10.1155/2015/369298

[16] Francisco Erivaldo Fernandes Junior, Gary G. Yen, “Particle swarm
optimization of deep neural networks architectures for image

classification,” in Swarm and Evolutionary Computation, Volume 49,

2019, pp 62-74, ISSN 2210-6502,
https://doi.org/10.1016/j.swevo.2019.05.010

[17] Lapid, R., Haramaty, Z., & Sipper, M. (2022). An Evolutionary,
Gradient-Free, Query-Efficient, Black-Box Algorithm for Generating

Adversarial Instances in Deep Convolutional Neural Networks.
Algorithms, 15(11), 407. https://doi.org/10.3390/a15110407

[18] Malik, S., Tahir, M., Sardaraz, M., & Alourani, A. (2022). A Resource

Utilization Prediction Model for Cloud Data Centers Using

Evolutionary Algorithms and Machine Learning Techniques. Applied
Sciences, 12(4), 2160. https://doi.org/10.3390/app12042160

[19] Hong Zhang, Hoang Nguyen, Xuan-Nam Bui, Trung Nguyen-Thoi,

Thu-Thuy Bui, Nga Nguyen, Diep-Anh Vu, Vinyas Mahesh, Hossein

Moayedi, Developing a novel artificial intelligence model to estimate

the capital cost of mining projects using deep neural network-based ant
colony optimization algorithm, Volume 66, 2020, ISSN 0301-4207,
https://doi.org/10.1016/j.resourpol.2020.101 604.

[20] Solomon Netsanet, Dehua Zheng, Wei Zhang, Girmaw Teshager,
Shortterm PV power forecasting using variational mode decomposition

integrated with Ant colony optimization and neural network, Energy
Reports, Volume 8, 2022, Pages 2022-2035, ISSN 2352-4847,
https://doi.org/10.1016/j.egyr.2022.01.120

[21] Xiaobo Zhao, Dongji Xuan, Kaiye Zhao, Zhenzhe Li, Elman neural
network using ant colony optimization algorithm for estimating of state

of charge of lithium-ion battery, Journal of Energy Storage, Volume

32, 2020, 101789, ISSN 2352-152X,
https://doi.org/10.1016/j.est.2020.101789

https://doi.org/10.1007/s00500-020-05174-2

